

三相无感正弦波 BLDC 驱动

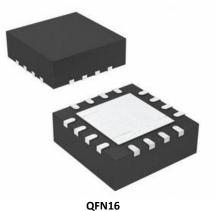
产品简述

MS37549 和 MS37545 是无感三相直流电机预驱芯片,采用 正弦波驱动方式,具有低噪声及低震动的特点。

芯片通过一个速度控制脚来控制电机的速度。并且电源电压可以低到 4V 来适应调整电机的转速。

MS37549 和 MS37545 采用 QFN16 封装,带散热片。

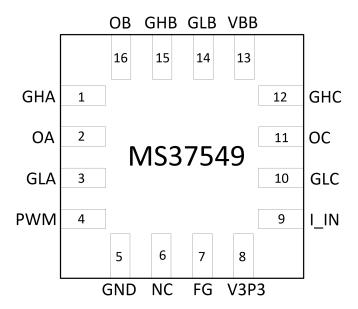
主要特点

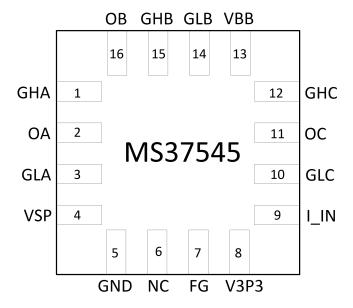

- 具有低噪声特点的 180 度正弦驱动
- 外置 PN 功率管
- 高效率控制算法
- 无感控制
- 模拟速度控制输入 (MS37545)
- PWM 速度控制输入 (MS37549)
- 低功耗模式
- FG 速度反馈输出
- 堵转检测功能
- 过流保护
- 软启动

应用

- 风扇
- 消费类产品

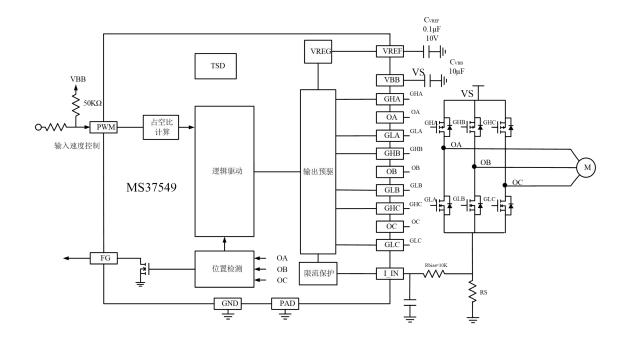
产品规格分类


产品	封装形式	丝印名称
MS37549	QFN16	MS37549
MS37545	QFN16	MS37545



https://www.vertex-icbuy.com/

管脚图



管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
1	GHA	0	A 半桥上管栅驱动
2	OA	I	外部电机 A 相输出
3	GLA	0	A 半桥下管栅驱动
	VSP	I	速度控制输入(MS37545)
4	PWM	I	速度控制输入(MS37549)
5	GND	-	地
6	NC	-	悬空
7	FG	0	速度反馈信号,开漏输出
8	V3P3	0	3.3V 电源输出
9	I_IN	1	OCP 检测电压输入
10	GLC	0	C半桥下管栅驱动
11	OC	1	外部电机 C 相输出
12	GHC	0	C半桥上管栅驱动
13	VBB	-	电源
14	GLB	0	B 半桥下管栅驱动
15	GHB	0	B 半桥上管栅驱动
16	ОВ	I	外部电机 B 相输出

内部框图

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

参数	符号	额定值	单位
电源耐压	V _{BB}	30	>
输入逻辑电压	V _{IN}	-0.3 ~ 6	V
FG 耐压	V_{FG}	30	V
FG 电流	I _{FG}	10	mA
工作温度范围	T _A	-40 ~ 125	°C
存储温度范围	Tstg	-55 ∼ 1 50	°C

电气参数

注意: 没有特别规定,环境温度为 T_A = 25℃ ±2℃,V_{BB}=12V。

电源功耗

参数	符号	测试条件	最小值	典型值	最大值	单位
工作电压	V_{BB}		4		24	V
工作电流	I _{BB}	正常工作,VIN=3V		8	11	mA
睡眠模式工作电流	I _{STB}	VSP/PWM=0, 持续时间>36ms		<1		uA

数字输入

参数	符号	测试条件	最小值	典型值	最大值	单位
输入电流	I _{IN}	V _{IN} =3V(R _{IN} =100kΩ下拉)		33		uA
低电平输入	V _{IL}				0.8	V
高电平输入	V _{IH}		2			V
逻辑输入迟滞	V _{IHYS}		200	300	600	mV
输入下拉电阻	R _{IN}		50	100	200	kΩ

MS37549 速度控制(PWM 脚)

参数	符号	测试条件	最小值	典型值	最大值	单位
PWM 开启阈值	D _{ON}		9.5	10	10.5	%
PWM 关闭阈值	D _{OFF}		7	7.5	8	%
PWM 输入范围	F _{PWM}		0.1	-	100	kHz

MS37545 速度控制(VSP 脚)

参数	符号	测试条件	最小值	典型值	最大值	単位
VSP 开启电压	V _{ON}			0.95		V
VSP 开启时间	t _{on}	C _{VREF} =1uF	100			us
VSP 关闭阈值	V _{THOFF}			280		mV
VSP 精度	E _{RRVSP}			±6		LSB
VSP 最高值	V _{SP(MAX)}			3.1		V

输出特性

参数	符号	测试条件	最小值	典型值	最大值	单位
高端驱动栅压	V _{GH}	-		5		V
低端驱动栅压	V_{GL}	-		5.8		V
高端上拉电流能力	I _{GH_PU}	-		50		mA
低端上拉电流能力	I _{GL PU}	-		30		mA
高端下拉电流能力	I _{GH_PD}	-		50		mA
低端下拉电流能力	I _{GH_PD}	-		30		mA

保护电路

参数	符号	测试条件	最小值	典型值	最大值	单位
VBB 欠压保护	V _{BBUVLO}	V _{BB} 上升		3.7		V
欠压保护迟滞	V _{BBUVHYS}			200		mV
堵转保护时间	t _{OFF}			8		S
堵转检测时间	t _{DETECT}			1		S
I_IN 脚拉电流	I _{BIAS_I_IN}			50		uA
内部限流基准电压	V _{OLP}			1		V
内部过流基准电压	V _{OCP}			1.5		V
过温保护	T _{TSD}	温度上升		165		°C
过温保护迟滞	T _{TSDHYS}			20		°C

功能描述

MS37545 和 MS37549 应用于风扇中,面向需要低噪声,低震动以及高效率的应用场合。

低功耗模式

MS37549 的低功耗模式受 PWM 脚控制,当 PWM 脚输入的电平为低持续超过 36ms,芯片会进入睡 眠模式,此时芯片的功耗小于 1uA。PWM 输入脚变高电平后,会立即重启芯片。

MS37545 的低功耗模式受 VSP 脚控制,当 VSP 脚输入的电平为低持续超过 36ms,芯片会进入睡眠 模式,此时芯片的功耗小于 1uA。VSP 输入脚变高电平后,会立即重启芯片。

速度控制

风扇的速度可以通过几种方式来调节:电源电压(控制电源电压), PWM 占空比控制(MS37549) 模拟输入控制(MS37545)。采用 PWM 占空比控制或者模拟输入控制方式能够简化外围,减少可变 电源的设计。电源电压控制模式下芯片的电压可以低到 4V 以满足一些特定的应用。

MS37545-VSP 模拟输入控制

一个内部的 ADC 将输入电压转化成一个速度控制所需的数值(如图 1)。当输入电压低于 VTHOFF 时, 马达输出将被关闭。而在启动的时候,输入必须达到 V_{THON} 一个 ton 时间。ton 延时是为了让内部的电源 基准以及模拟模块正常的启动。该延迟过后, VSP 就在 V_{THOFF} 和满幅之间控制运行(7.5%到 100%)。

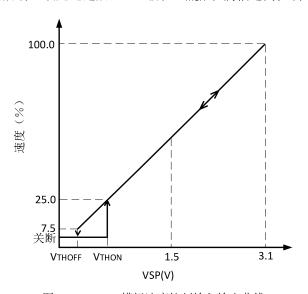


图 1. MS37545 模拟速度控制输入输出曲线

顶点光电子商城 版本号: V1.0 2021.08.11 共14页 第7页

MS37549-PWM 输入模式

内部有一个 PWM 占空比计算模块将输入端的 PWM 转化为所需要的数值(9bit 数据),通过这个 数值来控制风扇的转速。当 PWM 达到 10%左右的时候,马达驱动将开始工作(如图 2)。 PWM 输入 端集成了滤波器,滤除一些可能导致芯片开启或者关闭的干扰信号。

PWM 脚内部集成了一个下拉电阻(100kΩ),如果输入脚没有接好,芯片将直接关闭输出驱动。 如果需要 100%的速度,直接在 PWM 和电源之间接一个 50kΩ的电阻即可。

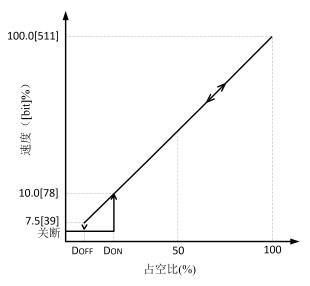


图 2. MS37549 PWM 速度控制输入输出曲线

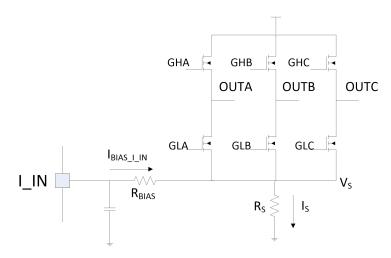
电源电压速度控制模式

电机的速度同样可以通过电源电压来控制。在这种方式下,只需要在 VBB 和 VSP(MS37545)或者 PWM(MS37549)之间接一个 50kΩ的电阻。电机驱动将受到芯片 VBB 电源欠压保护的控制,上升超过阈 值将启动,下降低于阈值将关闭。

堵转保护

芯片会检测当前的转速,判断是否处于堵转的状态。如果检测到一个堵转状态,芯片将在一个 toff时间内关闭驱动,并在该时间结束后尝试重新启动电机。

FG


FG 输出采用开漏输出,用来反馈当前速度情况。输出一个电流周期,FG 对应输出一个周期信号

https://www.vertex-icbuy.com/

电流检测及保护

I_IN 引脚输出一个 50uA 的电流,从而产生一个直流基准用来防止负电压。

以下公式为 V_{IIN} 和当前电流 I_S 的关系:

$$V_{I-IN} = I_{BIAS-I-IN} \bullet R_{BIAS} + I_S \bullet R_S$$

建议在 I_IN 上提供 0.5V 直流电压偏置。 R_{BIAS} 可以取 $10K\Omega$ 。

限流保护功能设置如下,当检测到 $V_{L_{IN}}$ 超过内部限流基准电压时,该侧的功率 PMOS 将在剩下的 PWM 周期内被关闭,直到下一个周期再正常开启。芯片正常工作时,内部限流基准电压设计值为 $1V_{\circ}$

如果检测到 V_{LIN} 超过内部过流基准电压时,芯片会直接关闭输出。芯片正常工作时,内部过流基准电压设置为 1.5V。

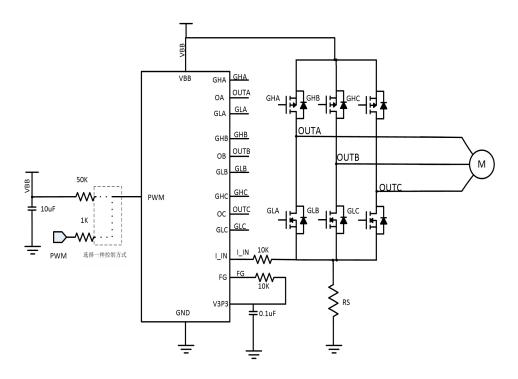
软启动功能

芯片软启动功能需要与限流保护结合使用。内部设置限流保护的基准电压,可选快速启动和慢速 启动。

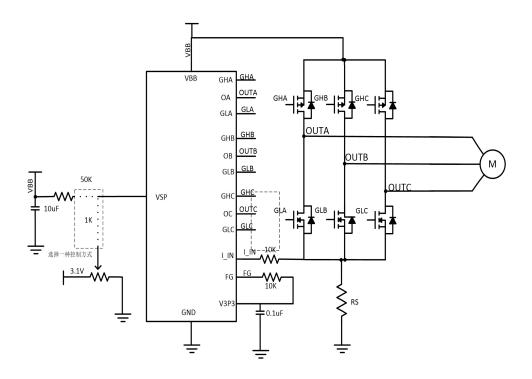
快速启动时限流保护的基准电压在启动后 1S 内从 0.5V 上升到 1V。

慢速启动时限流保护的基准电压在启动后 4S 内从 0.5V 上升到 1V。

配合内部的限流保护功能,只需要调整好 RS 电阻和 RBJAS 值,就可以获得一个合适的软启动过程

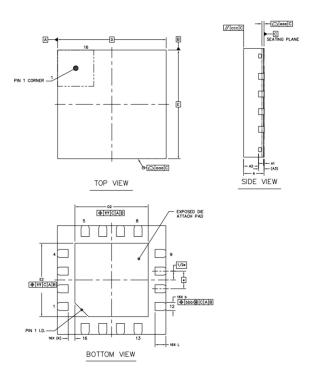

保护模块

芯片内部具有完善的保护模式: 堵转检测及自动重启,过流保护,输出短路保护,电源电压欠压保护以及过温保护。



典型应用图

MS37549


MS37545

封装外形图

QFN16

		日子(章米)	
符号	最小	典型	最大
А	0.7	0.75	0.8
A1	0.000	0.02	
A2		0.55	
A3		0.203REF.	•
b	0.25	0.3	0.35
D	4		
E	4		
e		0.65	
D2	2.6	2.7	2.8
E2	2.6	2.7	2.8
L	0.3	0.4	0.5
К		0.25REF	
aaa	0.1		
ссс	0.1		
eee	0.08		
bbb	0.1		
fff		0.1	
	A A1 A2 A3 b D E e D2 E2 L K aaaa ccc eee	最小 A 0.7 A1 0.000 A2 A3 b 0.25 D E e D2 2.6 E2 2.6 L 0.3 K aaaa ccc eee bbb	最小 典型 A 0.7 0.75 A1 0.000 0.02 A2 0.55 A3 0.203REF. b 0.25 0.3 D 4 E 4 e 0.65 D2 2.6 2.7 E2 2.6 2.7 L 0.3 0.4 K 0.25REF aaa 0.1 ccc 0.1 eee 0.08 bbb 0.1

印章与包装规范

1. 印章内容介绍

311 MS37545 XXXXXXX

产品型号: MS37549, MS37545

生产批号: XXXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/盘	盘/盒	只/盒	盒/箱	只/箱
MS37549	QFN16	4000	1	4000	8	32000
MS37545	QFN16	4000	1	4000	8	32000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受 静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-181 2023 5245

武汉市江夏区光谷大道联 享企业中心G栋二单元901

https://www.vertex-icbuy.com/

室