HAMAMATSU PHOTON IS OUR BUSINESS

CCD area image sensor

S9972/S9973 series

Front-illuminated FFT-CCD, high near IR sensitivity

The S9972/S9973 series are families of FFT-CCD image sensors specifically designed for low-light-level detection in scientific applications. By using the binning operation, the S9972/S9973 series can be used as a linear image sensor having a long aperture in the direction of the device length. This makes the S9972/S9973 series ideally suited for use in spectrophotometry. The binning operation offers significant improvement in S/N and signal processing speed compared with conventional methods by which signals are digitally added by an external circuit. The S9972/S9973 series also feature low noise and low dark signal (MPP mode operation). This enables low-light-level detection and long integration time, thus achieving a wide dynamic range.

The S9972/S9973 series have an effective pixel size of 24 \times 24 μm and are available in image areas of 24.576 (H) \times 2.976 (V) mm² (1024 \times 124 pixels) and 24.576 (H) \times 6.048 (V) mm² (1024 \times 252 pixels). The S9972/S9973 series are pin compatible with the S9970/S9971 series. (Operating conditions and characteristics are a little bit different from the S9970/S9971 series.)

Features

- 1024 (H) × 124 (V) and 1024 (H) × 252 (V) pixel format
- Pixel size: 24 × 24 μm
- **Line/pixel binning**
- **100% fill factor**
- Wide dynamic range
- Low dark signal
- Low readout noise
- MPP operation
- High near IR sensitivity

- Applications

- Fluorescence spectrometer, ICP
- Raman spectrometer
- Industrial inspection requiring
- Semiconductor inspection
- DNA sequencer
- **■** Low-light-level detection

Selection guide

Type no.	Cooling	Number of total pixels	Number of active pixels	Active area [mm (H) × mm (V)]	Suitable multichannel detector head
S9972-1007	Non-cooled	1044 × 128	1024 × 124	24.576 × 2.976	C7020-02
S9972-1008	Non-cooled	1044 × 256	1024 × 252	24.576 × 6.048	C/020-02
S9973-1007	One-stage	1044 × 128	1024 × 124	24.576 × 2.976	C7021-02
S9973-1008	TE-cooled	1044 × 256	1024 × 252	24.576 × 6.048	C7025-02

General ratings

Parameter	S9972-1007	S9972-1008	S9973-1007	S9973-1008		
Pixel size	24 (H) × 24 (V) μm					
Vertical clock phase	2-phase					
Horizontal clock phase	2-phase					
Output circuit	One-stage MOSFET source follower					
Package	24-pin ceramic DIP (refer to dimensional outlines)					
Window*1	Quartz glass*2 Sapphire*3 AR-coated sappl					

^{*1:} Temporary window type (ex. S9972-1007N) and UV coat type (ex. S9972-1007UV) are available upon request. (On the temporary window type, a window is temporarily attached by tape to protect the CCD chip and wires.)

^{*2:} Resin sealing

^{*3:} Hermetic sealing

➡ Absolute maximum ratings (Ta=25 °C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating temperature	Topr	-50	-	+50	°C
Storage temperature	Tstg	-50	-	+70	°C
Output transistor drain voltage	Vod	-0.5	-	+25	V
Reset drain voltage	Vrd	-0.5	-	+18	V
Test point (vertical input source)	Visv	-0.5	-	+18	V
Test point (horizontal input source)	VISH	-0.5	-	+18	V
Test point (vertical input gate)	VIG1V, VIG2V	-15	-	+15	V
Test point (horizontal input gate)	VIG1H, VIG2H	-15	-	+15	V
Summing gate voltage	Vsg	-15	-	+15	V
Output gate voltage	Vog	-15	-	+15	V
Reset gate voltage	VRG	-15	-	+15	V
Transfer gate voltage	VTG	-15	-	+15	V
Vertical shift register clock voltage	VP1V, VP2V	-15	-	+15	V
Horizontal shift register clock voltage	VP1H, VP2H	-15	-	+15	V

□ Operating conditions (MPP mode, Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Output transistor drain voltage		Vod	18	20	22	V
Reset drain voltage		Vrd	12	13	14	V
Output gate voltage		Vog	-0.5	0	2	V
Substrate voltage		Vss	-	0	-	V
Test point (vertical input source)		Visv	-	Vrd	-	V
Test point (horizontal input source)		VISH	-	Vrd	-	V
Test point (vertical input gate)		VIG1V, VIG2V	-8	0	-	V
Test point (horizontal input gate)		VIG1H, VIG2H	-8	0	-	V
Vertical shift register	High	VP1VH, VP2VH	0	4	6	V
clock voltage	Low	VP1VL, VP2VL	-9	-8	-7	
Horizontal shift register	High	VP1HH, VP2HH	0	4	6	V
clock voltage	Low	VP1HL, VP2HL	-9	-8	-7	V
Cumming gate voltage	High	Vsgh	0	4	6	V
Summing gate voltage	Low	Vsgl	-9	-8	-7	V
Poset gate voltage	High	Vrgh	0	4	6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Reset gate voltage	Low	VRGL	-9	-8	-7)
Transfer gate voltage	High	VTGH	0	4	6	V
Transfer gate voltage	Low	VTGL	-9	-8	-7	
External load resistance		RL	9	10	11	kΩ

■ Electrical characteristics (Ta=25 °C)

Parame	Symbol	Min.	Тур.	Max.	Unit	
Signal output frequency		fc	-	0.1	1	MHz
Vertical shift register	S9972/S9973-1007	CP1V, CP2V	-	1600	-	nE
capacitance	S9972/S9973-1008	CPIV, CP2V	-	3200	-	pF
Horizontal shift register capacitance		Ср1н, Ср2н	-	180	-	pF
Summing gate capacitance		Csg	-	7	-	pF
Reset gate capacitance		Crg	-	7	-	pF
Transfer gate capacitance		Стс	-	100	-	pF
Transfer efficiency*4		CTE	0.99995	0.99999	-	-
DC output level		Vout	12	15	18	V
Output impedance		Zo	-	3	-	kΩ
Power dissipation*5		Р	-	15	-	mW

^{*4:} Charge transfer efficiency per pixel, measured at half of the full well capacity

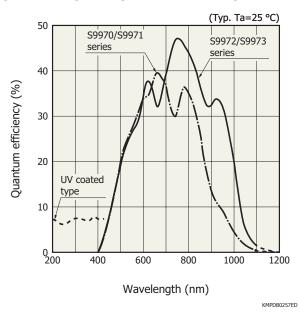
^{*5:} Power dissipation of the on-chip amplifier plus load resistance

■ Electrical and optical characteristics (Ta=25 °C, unless otherwise noted)

F	Parameter	Symbol	Min.	Тур.	Max.	Unit
Saturation outp	ut voltage	Vsat	-	Fw × CE	-	V
Full well capaci	Vertical	Fw	120	240	-	ke ⁻
ruii weli capaci	Horizontal	T FW	240	480	-	Ke
Conversion effi	ciency*6	CE	-	2.8	-	μV/e⁻
Dark current*7	+25 °C	DS	-	2000	30000	o-/pivol/c
(MPP mode)	(MPP mode) 0 °C		-	100	1500	e ⁻ /pixel/s
Readout noise*8		Nread	-	4	18	e ⁻ rms
Dynamic range	Line binning	Drange	60000	120000	-	
Dynamic range	Area scanning	Drange	30000	60000	-	_
Spectral respor	ise range	λ	-	400 to 1100	-	nm
Photo response non-uniformity*10		PRNU	-	-	±10	%
Point defects*11			-	-	0	
Blemish	Cluster defects*12] -	-	-	0	-
	Column defects*13		-	-	0	

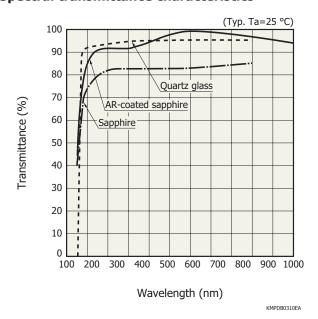
^{*6:} VoD=20 V , Load resistance=10 $k\Omega$

Photo response non-uniformity =
$$\frac{\text{Fixed pattern noise (peak to peak)}}{\text{Signal}} \times 100 \text{ [}\%$$


*11: White spots

Pixels that generate dark current higher than 3% of the saturation. (Measured at 0 °C, Ts=1 s)

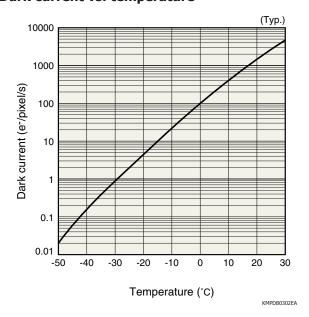
Pixels whose sensitivity is lower than one-half of the average pixel output (Measured with uniform light producing one-half of the saturation charge)


- *12: 2 to 9 consecutive image defects
- *13: 10 or more consecutive image defects

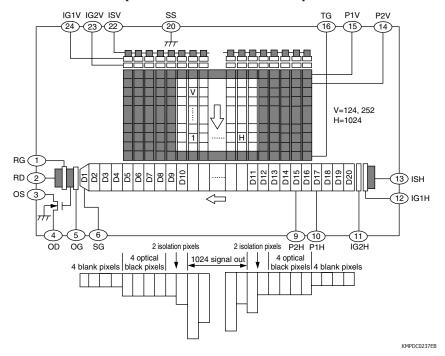
Spectral response (without window)*14

*14: Spectral response with sapphire or AR-coated sapphire is decreased according to the spectral transmittance characteristic of window material.

- Spectral transmittance characteristics


^{*7:} Dark current nearly doubles for every 5 to 7 °C increase in temperature.

^{*8:} Operating frequency 80 kHz, temperature -40 °C


^{*9:} Dynamic range = Full well capacity / Readout noise

^{*10:} Measured at one-half of the saturation output (full well capacity) using LED light (peak emission wavelength: 560 nm)

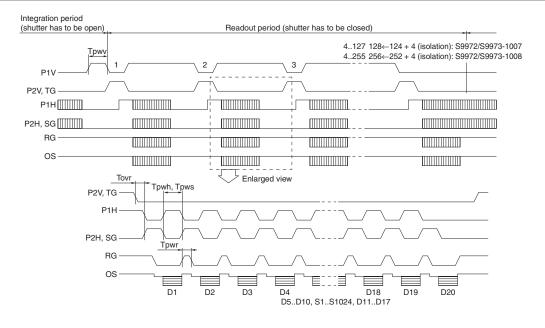
Dark current vs. temperature

Device structure (schematic as viewed from top of dimensional outlines)

Pixel format


Left ← Horizontal Direction → Right						
Blank	Optical Black	Isolation	Effective	Isolation	Optical Black	Blank
4	4	2	1024	2	4	4

Top ← Vertical Direction → Bottom					
Isolation	Effective	Isolation			
2	124 or 252	2			

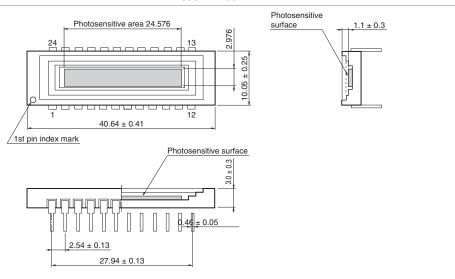

- Timing chart

Line binning

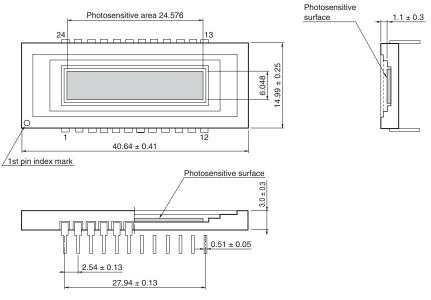
KMPDC0238EB

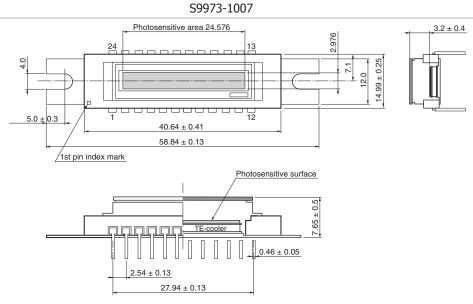
Area scanning (large full well mode)

KMPDC0240EE


	Parameter		Symbol	Min.	Тур.	Max.	Unit
	Pulse width*15	S9972/S9973-1007	Tpwv	6.0	18	-	
P1V, P2V, TG	Puise width	S9972/S9973-1008	Ιρννν	12	36	-	μs
	Rise and fall times		Tprv, Tpfv	200	-	-	ns
	Pulse width		Tpwh	500	5000	-	ns
P1H, P2H	P1H, P2H Rise and fall times*15		Tprh, Tpfh	10	-	-	ns
	Duty ratio	Duty ratio		-	50	-	%
	Pulse width		Tpws	500	5000	-	ns
SG	Rise and fall times		Tprs, Tpfs	10	-	-	ns
	Duty ratio		-	-	50	-	%
RG	Pulse width		Tpwr	100	500	-	ns
KG	Rise and fall times	Rise and fall times		5	-	-	ns
TG - P1H	Overlap time			3	6	-	μs

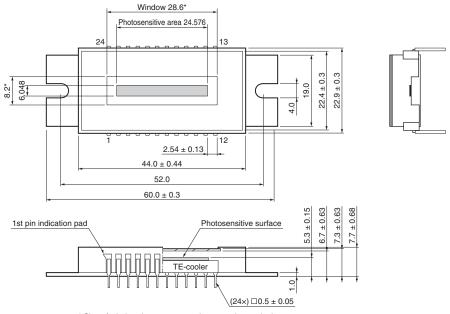
^{*15:} Symmetrical clock pulses should be overlapped at 50% of maximum amplitude.




Dimensional outlines (unit: mm)

S9972-1007

S9972-1008



KMPDA0206EC

KMPDA0205EC

KMPDA0204EC

S9973-1008

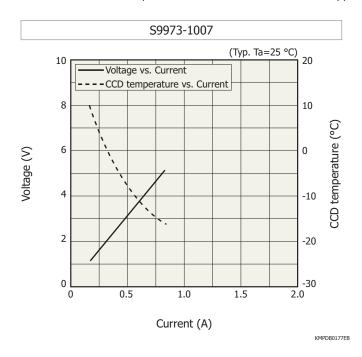
* Size of window that guarantees the transmittance in the "Spectral transmittance characteristics of window material" graph

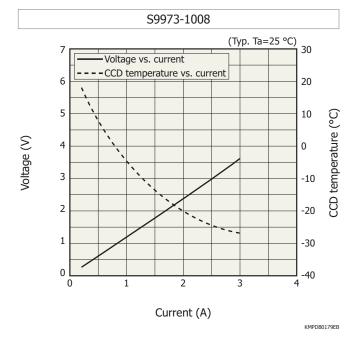
KMPDA0198EC

₽ Pin connections

Din Na	S9972 series			S9973 series	Remark
Pin No.	Symbol	Description	Symbol	Description	(standard operation)
1	RG	RG Reset gate		Reset gate	
2	RD	RD Reset drain		Reset drain	+13 V
3	OS	Output transistor source	OS	Output transistor source	RL=10 kΩ
4	OD	Output transistor drain	OD	Output transistor drain	+20 V
5	OG	Output gate	OG	Output gate	0 V
6	SG	Summing gate	SG	Summing gate	Same timing as P2H
7	-		Th1	Thermistor	
8	-		Th2	Thermistor	
9	P2H	CCD horizontal register clock-2	P2H	CCD horizontal register clock-2	
10	P1H	CCD horizontal register clock-1	P1H	CCD horizontal register clock-1	
11	IG2H	Test point (horizontal input gate-2)	IG2H	Test point (horizontal input gate-2)	0 V
12	IG1H	Test point (horizontal input gate-1)	IG1H	Test point (horizontal input gate-1)	0 V
13	ISH	Test point (horizontal input source)	ISH	Test point (horizontal input source)	Shorted to RD
14	P2V	CCD vertical register clock-2	P2V	CCD vertical register clock-2	
15	P1V	CCD vertical register clock-1	P1V	CCD vertical register clock-1	
16	TG*16	Transfer gate	TG*16	Transfer gate	Same timing as P2V
17	-		-		
18	-		P-	TE-cooler-	
19	-		P+	TE-cooler+	
20	SS	Substrate (GND)	SS	Substrate (GND)	GND
21	-		-		
22	ISV	Test point (vertical input source)	ISV	Test point (vertical input source)	Shorted to RD
23	IG2V	Test point (vertical input gate-2)	IG2V	Test point (vertical input gate-2)	0 V
24	IG1V	Test point (vertical input gate-1)	IG1V	Test point (vertical input gate-1)	0 V

^{*16:} Isolation gate between vertical register and horizontal register. In standard operation, TG should be applied the same pulse as P2V.




Specifications of built-in TE-cooler (Typ.)

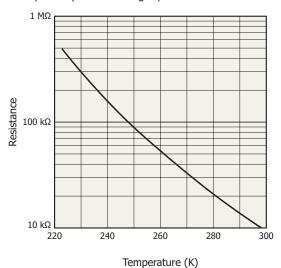
Parameter	Symbol	Condition	S9973-1007	S9973-1008	Unit
Internal resistance	Rint	Ta=25 °C	6.0	1.2	Ω
Maximum current*17	Imax	Tc*18=Th*19=25 °C	1.5	3.0	Α
Maximum voltage	Vmax	Tc*18=Th*19=25 °C	8.8	3.6	V
Maximum heat absorption*20	Qmax		6.7	5.1	W
Maximum temperature of hot side	-		70		

^{*17:} If the current is greater than Imax, the heat absorption begins to decrease due to the Joule heat. It should be noted that this value is not a damage threshold. To protect the thermoelectric cooler and maintain stable operation, the supply current should be less than 60 % of this maximum current.

- *18: Temperature of cool side of thermoelectric cooler
- *19: Temperature of hot side of thermoelectric cooler
- *20: This is a heat absorption when the maximum current is supplied to the TE-cooler.

Specifications of built-in temperature sensor

A thermistor chip is built into the same package with a CCD chip and monitors the operating CCD chip temperature. The relation between this thermistor's resistance and absolute temperature is express by the following equation.


 $RT1 = RT2 \times exp BT1/T2 (1/T1 - 1/T2)$

RT1: resistance at absolute temperature T1 [K] RT2: resistance at absolute temperature T2 [K]

BT1/T2: B constant [K]

The characteristics of the thermistor used are as follows.

R298=10 kΩ B298/323=3450 K

KMPDB0111EB

S9972/S9973 series

Precautions (electrostatic countermeasures)

- · Handle these sensors with bare hands or wearing cotton gloves. In addition, wear anti-static clothing or use a wrist band with an earth ring, in order to prevent electrostatic damage due to electrical charges from friction.
- · Do not place the sensor directly on workbenches or floors that may become charged with static electricity.
- · Connect a ground wire to workbenches or floors in order to discharge static electricity.
- · Ground tools, such as tweezers and soldering irons, that are used to handle the sensor.

It is not always necessary to provide all the electrostatic countermeasures stated above. Implement these countermeasures according to the extent of deterioration or damage that may occur.

Temperature gradient rate for cooling or heating of element

When using an external cooler, set the temperature gradient rate for cooling or heating the element to 5 K/minute or less.

- Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- · Disclaimer
- Image sensors
- Technical information
- · FFT-CCD area image sensor/Technical information
- · Image sensors/Terminology

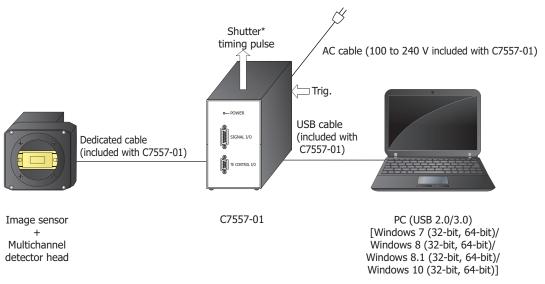
Multichannel detector head (C7020-02, C7021-02, C7025-02)

Features

C7020-02: for S9972 series C7021-02: for S9973-1007 C7025-02: for S9973-1008

- Area scanning or full line-binnng operation
- Readout frequency: 250 kHz
- → Readout noise: 20 e-rms
- ightharpoonup $\Delta T = 50 °C (\Delta T changes by radiation method.)$

Input	Symbol	Value
	V _{D1}	+5 Vdc, 200 mA
	VA1+	+15 Vdc, +100 mA
Cumply	VA1-	-15 Vdc, -100 mA
Supply voltage	VA2	+24 Vdc, 30 mA
voitage	VD2	+5 Vdc, 30 mA (C 7021-02, C7025-02)
	Vp	+5 Vdc, 2.5 A (C 7021-02, C7025-02)
	VF	+12 Vdc, 100 mA (C 7021-02, C7025-02)
Master start	φms	HCMOS logic compatible
Master clock	φmc	HCMOS logic compatible, 1 MHz


Multichannel detector head controller C7557-01

Features

- For control of multichannel detector head and data acquisition
- Easy control and data acquisition using supplied software via USB interface

- Connection example

* Shutter, etc. are not available.

KACCC0402EE

Information described in this material is current as of April 2019.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

MAMATSU

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

IL2C-1 ICRIINO-CRO, HIgasRi-RU, Hamamatsu City, 4:35-8558 Japan, Telephone: (1)908-231-0960, Fax: (1)908-231-2118, E-mail: usa@hamamatsu.com
Germany: Hamamatsu Potonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-2375-0, Fax: (49)8152-265-8, E-mail: info@hamamatsu.de
France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10, E-mail: info@hamamatsu.fr
United Kingdom: Hamamatsu Photonics Ik Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden LAV 1BM, United Kingdom, Telephone: (43)1707-294888, Fax: (44)1707-325777, E-mail: info@hamamatsu.co.uk
North Europe: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01, E-mail: info@hamamatsu.e
Italy: Hamamatsu Photonics Italia S.r.L.: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 31, E-mail: info@hamamatsu.e
Italy: Hamamatsu Photonics (China) Co., Ltd.: B1201, Jiaming Center, No.27 Dongsanhuan Beilu, Chaoyang District, 10002 Beijing, P.R.China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866, E-mail: hpc@hamamatsu.com.cn
Taiwan: Hamamatsu Photonics Taiwan Co., Ltd.: 8F-3, No. 158, Section2, Gongdao 5th Road, East District, Hsinchu, 300, Taiwan R.O.C. Telephone: (86)3-659-0081, E-mail: info@hamamatsu.com.tw